
J .  Fluid iMech. (1988), wol. 189, pp. 463-489 
Printed in Great Britain 

463 

The unsteady force on a body at low Reynolds 
number ; the axisymmetric motion of a spheroid 

By C. J. LAWRENCE 
Department of Theoretical and Applied Mechanics, University of Illinois at Urbana- 

Champaign, 216 Talbot Laboratory, 104 South Wright Street, Urbana, IL  61801, USA 

A N D  S. WEINBAUM 
Department of Mechanical Engineering, The City College of the City University of New York, 

New York, NY 10031, USA 

(Received 14 June 1986 and in revised form 14 September 1987) 

In  a recent paper by Lawrence & Weinbaum (1986) an unexpected new behaviour 
was discovered for a nearly spherical body executing harmonic oscillations in 
unsteady Stokes flow. The force was not a simple quadratic function in half-integer 
powers of the frequency parameter h2 = - iu2w/v,  as in the classical solution of Stokes 
(1851) for a sphere, and the force for an arbitrary velocity U ( t )  contained a new 
memory integral whose kernel differed from the classical t-i behaviour derived by 
Basset (1888) for a sphere. A more general analysis of the unsteady Stokes equations 
is presented herein for the axisymmetric flow past a spheroidal body to elucidate the 
behaviour of the force a t  arbitrary aspect ratio. Perturbation solutions in the 
frequency parameter h are first obtained for a spheroid in the limit of low- and high- 
frequency oscillations. These solutions show that in contrast to a sphere the first- 
order corrections for the component of the drag force that is proportional to  the 
first power of h exhibit a different behaviour in the extreme cases of the steady 
Stokes flow and inviscid limits. Exact solutions are presented for the middle 
frequency range in terms of spheroidal wave functions and these results are 
interpreted in terms of the analytic solutions for the asymptotic behaviour. It is 
shown that the force on a body can be represented in terms of four contributions ; the 
classical Stokes and virtual mass forces ; a newly defined generalized Basset force 
proportional to h whose coefficient is a function of body geometry derived from the 
perturbation solution for high frequency; and a fourth term which combines 
frequency and geometry in a more general way. In  view of the complexity of this 
fourth term, a relatively simple correlation is proposed which provides good accuracy 
for all aspect ratios in the range 0.1 < b/u < 10 where exact solutions were calculated 
and for all values of A. Furthermore, the correlation has a simple inverse Laplace 
transform, so that the force may be found for an arbitrary velocity U ( t )  of the 
spheroid. The new fourth term transforms to a memory integral whose kernel is either 
bounded or has a weaker singularity than the t-i behaviour of the Basset memory 
integral. These results are used to propose an approximate functional form for the 
force on an arbitrary body in unsteady motion at  low Reynolds number. 

1. Introduction 
The oscillatory motion of particles a t  low Reynolds number is of interest in 

Brownian motion, suspension rheometry and the passage of sound waves through 
particulate systems. More general unsteady particle motions occur for interactions in 
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colloidal suspensions, for particles in filters and for particles in turbulent flow. This 
paper will examine the behaviour of the unsteady viscous layers that exist on 
spheroidal particles in axisymmetric flow. The study leads to an approximate 
expression for the functional form of the force on an arbitrary body in unsteady flow 
a t  low Reynolds number. 

Related solutions exists for a sphere oscillating along its diameter, see the classic 
paper by Stokes (1851), and a variety of problems where the stream-lines are straight 
and there is no pressure gradient or normal velocity component. The latter include 
the impulsive motion of infinite cylinders of general cross-section parallel to their 
axis (Batchelor 1954; Hasimoto 1955) and the impulsive or oscillatory motion of a 
wall in its own plane. Although the solutions for the sphere and the infinite-aspect- 
ratio body exhibit fundamental differences in behaviour there has been no previous 
study that examines the transition in behaviour of the unsteady viscous layers 
between these two limits of geometry over the frequency spectrum. The recent paper 
by Lawrence & Weinbaum (1986) has shown that the force on an oscillating 
perturbed sphere has a previously unrecognized term whose phase varies with 
frequency, which for an arbitrary U ( t )  transforms to a memory integral whose kernel 
differs from the classic t-i behaviour. In  the present paper the solutions for an 
arbitrary spheroid will be presented to elucidate the complete transition in behaviour 
that occurs as a function of aspect ratio and frequency. 

The linearized Navier-Stokes equations differ from the more frequently studied 
steady Stokes equation in the inclusion of the unsteady inertia term : 

au 
at 

p- = - u p +  p v u ,  v . u  = 0. 

The well-known solution to (1)  for the shear stress on an oscillating plane wall is 

while the solution for the hydrodynamic force on an oscillating sphere is given by 

Here p is the fluid viscosity, a is the sphere radius, U is the peak velocity and 6 is the 
penetration depth ( v / w ) i ,  where w is the frequency of oscillation and v the kinematic 
viscosity. S characterizes the distance that the centroid of vorticity diffuses normal 
to the wall during a single oscillation. A critical dimensionless parameter which 
determines the physics of the solution in (3) is a/S.  At low frequencies, when a / s  is 
small, the force on the sphere is dominated by the first or steady Stokes drag term 
while the second term, which is out of phase with the velocity, is a correction due 
to the unsteady viscous layer that envelopes the sphere. The phase difference arises 
from the fact that the inner regions of the layer are in phase with the velocity of 
the body, whereas the outer inviscid regions are in out of phase. The total stress 
correction a t  the surface comes from two contributions : an unsteady shearing stress 
and a displacement effect on the outer inviscid flow which modifies the normal stress 
or pressure field. The relative importance of these two contributions changes with 
frequency. A t  low frequency one can show using the theory of matched asymptotic 
expansions that the correction is due primarily to  an alteration of the inviscid far 
field which lies beyond S. The intriguing feature is that the wall stress in (2) has 
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exactly the same phase as the correction term in (3), although it  does not depend on 
a displacement of the outer flow since, for the plane wall, there is no normal velocity 
component. 

The behaviour of ( 3 )  in the high-frequency or boundary-layer limit where 
a /6  + 1 is easily seen by rewriting it in the form 

where it is apparent that the unsteady damping force is a first-order correction of 
0 ( 6 / a )  to the virtual mass force. Batchelor (1967) has shown that for a sphere, two- 
thirds of the real part of this term comes from the viscous stress whereas the 
remainder is due to the displacement effect on the outer inviscid flow. This 
distribution between the viscous stress and displacement contribution depends 
strongly on aspect ratio and can be determined for other body geometries only in the 
boundary-layer limit in which the viscous-stress term can be calculated inde- 
pendently by applying ( 2 )  locally and integrating over the surface. Two important 
observations can be made in relation to (3) and (4). The first is that the phase of the 
unsteady viscous-damping term is the same throughout the frequency spectrum 
although the relative contributions of the viscous stress and displacement effects 
change with frequency. The second is that the relative importance of the steady and 
unsteady damping forces changes markedly as the aspect ratio increases. It will be 
convenient to introduce the complex frequency parameter h2 = -iiwa2/v, where 
h is the coefficient of the unsteady viscous-stress term in ( 3 ) .  For a sphere the second 
term will be the dominant one only for a very limited frequency range defined by 
1 < Ihl < 9, whereas for an elongated body the force component with phase must 
become increasingly important over a wider range of the frequency spectrum since 
to leading order the surface stress must eventually approach ( 2 )  with corrections for 
end effects and transverse curvature. This prediction has significant implications for 
the interaction between elongated particles in colloidal suspensions where the 
unsteady viscous interaction force has in the large been neglected. For reasons that 
will be discussed in the concluding comments this is a reasonable approximation for 
spheres but may be invalid for high-aspect-ratio spheroids. 

Crucial insights into the first observation made above have recently been obtained 
from the solution to ( 1 )  for a perturbed sphere in the form of a spheroid (figure 1) with 
semi-axes related by a = b( 1 + e ) ,  where E is a perturbation parameter (Lawrence & 
Weinbaum 1986). It can be shown that for this near sphere the total hydrodynamic 
force takes the form 

F = Re { - 6ltpuu[E”, + Bh + ma h2 + $ ( A ,  E ) ]  U ePiwt}, (5a) 

where h2 = -iiwa‘/v as above and 

The coefficients Fs and ma are identical with the respective limits of Sampson’s (1891) 
solution (Happel & Brenner 1965) and Green’s solution (1833) for a slightly oblate or 
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prolate spheroid. The B-term with $ 7 ~  phase can be shown to be a t  O(a2) either the 
first-order correction for the unsteady viscous stress a t  low frequency or the first- 
order correction to the virtual mass force for the thin viscous boundary layer at high 
frequency. The solution in the low-frequency limit is a special case of the more 
general formula 

F =  -6n,uaU-[A+hA-A+O(h2)] (6) 

derived by Lawrence (1988) for an arbitrary body performing slow harmonic 
oscillations in which A is the frictional resistance tensor for steady Stokes flow. At  
O(e2) one can show that the asymptotic formulas for the coefficient B differ in the 
high- and low-frequency limits. This difference is borne out by the asymptotic 
solutions a t  high and low frequency for a spheroid of arbitrary aspect ratio presented 
in $3, suggesting that a modified form of (5) will be necessary for bodies whose aspect 
ratio is not unity. 

The most interesting result embodied in (5) is the presence of a new term coupling 
frequency and geometry, $(A,  E ) ,  which has a large phase variation as a function of 
frequency. In  the low-frequency limit h+O,$ - (8c2/525)h2 and hence this term 
exhibits a $ 7 ~  phase shift. This can be interpreted as a second-order correction to the 
inviscid outer flow at low frequency due to the displacement effect of the inner 
viscous region. In  the high-frequency limit $ - 8e2/1 75 and there is no phase shift. 
This is a second-order viscous correction to the virtual-mass term ; it is in phase with 
velocity and thus equivalent to an additional Stokes-drag term. At intermediate 
frequencies there is a monotonic variation in phase between these two limiting cases. 
Although the corrections are small for the slightly oblate spheroid it is clear from 
these results that the sphere is a special case in which the unsteady shear stress and 
displacement effects on the inviscid flow combine in such a way that the phase of the 
unsteady stress term is always i7~ ahead of the velocity for all frequencies. This arises 
from the simple functional form of the solution for the stream function for a sphere 
in spherical coordinates. The angular dependence of the distribution of vorticity is 
simply separable, which provides for a spherical displacement body at  all frequencies 
- in the general case, the displacement body is spherical only a t  low frequency. In the 
present paper we shall want to generalize (5) to  apply to spheroids of any aspect rat,io 
and also propose an approximate functional form for other body shapes. 

Another novel aspect of (5) is that it leads to an expression for the force on a near 
sphere moving with an arbitrary velocity W ( t )  that has a new memory function in 
addition to  the t-: memory function derived by Basset (1888) for the force whose 
phase is an ahead of the velocity. The parameter h2 can be viewed as the Laplace- 
transform variable in the superposition of the solution over all frequencies. The 
Laplace inversion can be performed analytically and is shown in Lawrence & 
Weinbaum (1986) to be of the fornit 

82 
175 

G(t)  = ~ I m  (($ncc);eat erfc (at)", a = $(I +i2/3). 

t The factor of 6 was erroneously omitted from the fourth term in the original paper 
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The first three terms are the classical Stokes-drag, Basset-force and virtual-mass 
contributions to the total hydrodynamic force. These are the only force components 
for a spherical particle in transient motion. The particular form of the memory term 
in the Basset-force integral occurs only for an unsteady viscous stress which is 
proportional to A,  that is a force component which is in ahead of the velocity and 
whose amplitude varies as &. For any non-spherical body there will be a frequency- 
dependent force whose memory integral depends on the geometry in a more 
complicated fashion. For a slightly oblate spheroid the memory-function is given by 
(7 b ) .  This memory function is bounded as t + 0 and decays as t-t for large t .  For an 
arbitrary spheroid the geometry-dependent memory function is much more 
complicated and does not have a simple closed-form analytic representation. We 
shall show, however, that a surprisingly good correlation approximation is possible 
which should prove adequate for most purposes. Both memory integrals will play an 
increasingly important role for elongated spheroids since the range of frequencies 
over which the unsteady stress terms dominate in the generalized form of (5) grows 
as the aspect ratio increases. We shall find that the generalized Basset-force integral 
term has a dimensionless coefficient of order (A .A[ Re:. The memory integral terms 
will be larger than the Stokes drag term when \A( Re: > 1 .  This is more likely to occur 
with slender bodies for which IA( - (b/a) [l/(logb/a)]. 

There have been relatively few fundamental studies of the linearized equation ( 1 )  
compared with its steady-state counterpart. Tchen (1947) derived the inverse result 
to (7a) for a sphere, giving the velocity in terms of an arbitrary time-dependent 
externally applied force. Lamb (1932) derived a set of solid spherical harmonics for 
the unsteady Stokes equations (in addition to his better-known solution of the steady 
equations). Much of the subsequent work has been based on these major 
contributions, using the basic spherical (or cylindrical) geometry as a starting point. 
An exception is the work of Hocquart (1976, 1977a) who found solutions for the 
velocity field caused by a spheroidal particle executing oscillatory rotations about its 
axis or an equatorial diameter. The main emphasis of this work was to understand 
Brownian motions, as demonstrated by the subsequent papers (Hocquart 1977 b ; 
Hocquart & Hinch 1983). In this context, it is the low-frequency regime that is 
important, so there was no need to evaluate the spheroidal wave functions (which 
arise as part of the solution) in the general case. Aoi (1955a, b)  tackled the 
mathematically similar problem of Oseen flow past a spheroid, which also leads to 
spheroidal wave-function solutions and the work was generalized to include higher- 
order term by Breach (1961). This work was necessarily limited to  small inertial 
corrections, corresponding to the low-frequency limit. I n  the present article, we shall 
find the force on a spheroidal particle of arbitrary aspect ratio oscillating with 
arbitrary frequency along its axis of symmetry. 

The problem under discussion has been considered on a t  least two previous 
occasions. Kanwal ( 1955) formulated the problems for axisymmetric rotational and 
longitudinal oscillations of spheroids and obtained the form for the stream function 
in terms of spheroidal wave functions given in $4 below. However, he was not able 
to perform the calculations necessary to evaluate the force. Subsequently Lai & 
Mockros (1972) followed the same approach and obtained an approximate form for 
the force on a spheroid in longitudinal acceleration. They used an expansion of the 
spheroidal wave functions for small values of the parameter c (or equivalently [ A [ )  to 
obtain the form of the force at  low frequency correct to first order in ] A ( .  For reasons 
that are unclear, in their result they retained the added-mass term which arose 
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naturally from integrating the stress on the surface of the spheroid. This is 
inconsistent since, as we have seen, the added-mass term is of O(lhlz). In the notation 
of the present work, their result is 

where E; is the coefficient of the low-frequency correction to  the steady Stokes drag 
F, and is numerically equal to Fi (Lawrence 1988). If the result (8) were extended to 
higher order, the coefficient of h2 would not be ma. This can be seen by comparison 
with the analytical result for near spheres (5) where we see that, for the low-frequency 
expansion, the coefficient of h2 should be ma + 8s2/525 ; for aspect ratios substantially 
different from unity the error will be much larger. In  fact, the result (8) is 
approximately correct for all frequencies when the aspect ratio is close to unity, as 
we shall discuss in $7. It corresponds to omitting the term h#(h,b/a) from (67) 
and defining the Basset coefficient to be Fl instead of the high-frequency coefficient 
B. Clift, Grace & Weber (1978) summarized the above work and were the first to 
observe that the low-frequency-correction term Fl is simply the square of the Stokes 
drag P’. 

Lai (1973) claims to have obtained exact solutions for the transient motion of 
circular disks along their axis. However, the results presented correspond to the 
approximate solution (8). When the approximate result is integrated over frequency, 
an expression for the time-dependent force is obtained which corresponds to (82) 
with the last term omitted. The mathematical form of this expression differs from 
that for a sphere only in the values of the three geometrical coefficients for the added 
mass, Basset force and Stokes drag. As we shall discuss in $5, even the four-term 
correlation of the current work loses accuracy for bodies of aspect ratio less than 0.1 
and the three-term approximation (8) will be even more deficient. Further caution in 
the use of these results is warranted because, for a real flow, one would expect to see 
separation behind the disk, which cannot be predicted by the linear theory. 

In  the next section, the equations of motion will be formulated in terms of the 
stream function in spheroidal coordinates. The two dimensionless parameters in the 
problem may be chosen in different ways depending on mathematical convenience. 
The results will be presented in $5 in terms of the physically significant parameters 
which are the streamwise/cross-stream aspect ratio b/a,  and the frequency parameter 
Ihl = a(w/v) i .  For most applications, aspect ratios between 0.1 and 10 may be 
considered. The three limiting cases b/w = 0 ,1 ,  co correspond to the disk, sphere and 
infinite cylinder respectively, but are relatively unimportant ; an oscillating disk 
sheds nonlinear vortices a t  all but the lowest frequencies, whilst the sphere and 
cylinder can be treated more effectively in their natural coordinate systems (Stokes 
1851 ; Batchelor 1954). The frequency parameter Ihl may be quite large (of order 10 
or 100 for a pendulum) but is generally small for microscopic particles. 

From a general point of view, one would expect the force on an oscillating body 
to be an arbitrary function of the two dimensionless parameters IhJ and bla. We can 
impose constraints on the functional form of the force using knowledge of its limiting 
behaviour. Asymptotic results for small and large frequencies are derived in $ 3  and 
these give a good indication of the general solution. The high-frequency behaviour is 
known to be the added-mass term ma h2, whilst the low-frequency behaviour is 
known to be the quasi-steady Stokes term F,. Thus, a t  intermediate frequency, the 
force is restricted to behaviour between O(Jhol) and O(lhzl). It is then to be expected 
that the force will have similar functional form to the quadratic dependence on h 
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observed for a sphere (3).  After a representative linear term has been identified, the 
remaining frequency-dependent and phase-varying term should be small. It proves 
to be convenient to use the second term a t  high frequency for the O(A) Basset term; 
this definition of B thus provides for a self-consistent generalization of the Basset 
force for non-spherical bodies. In this way the force can be represented as the sum 
of four contributions, three of which form a quadratic in A with known closed-form 
analytic expressions for the geometrical dependence of the coefficients. The fourth 
term is necessarily more complicated, varying from O(A) a t  low frequency to O( 1) at  
high frequency. However, it vanishes identically for a sphere and remains small a t  
all frequencies for bodies that have aspect ratio of order unity. The general analytic 
solution for arbitrary frequency is presented in $4, and all the results are combined 
in $5. Exact numerical solutions are obtained in the parameter ranges 0.1 < b/a < 

The graphical results suggest a simple form for a correlation of the fourth term in 
the force, the other three terms being known exactly. The four-term correlation is 
accurate in the range 0.1 < b/a < 10 for all frequencies and reduces to Stokes’ result 
(3) for a sphere. Because three of the terms in the force ar known exactly and the 
fourth term is relatively small, the four-term representation for the force is highly 
accurate. An important feature of the correlation is that the inverse transform may 
be found analytically for an arbitrary spheroid to give the result corresponding to (7) 
and Basset’s result for a sphere. The inverse transform is described in $6. The results 
are discussed in the concluding section and an extension of the approximate 
representation is proposed to apply the method to a body of arbitrary shape. 

10,O.l < Ihl < 10. 

2. Formulation in spheroidal coordinates 
We consider the spheroid generated by rotating the ellipse w2/a2 + z 2 / V  = 1 about 

the z-axis as shown in figure 1 (a) .  For the time being, we shall restrict consideration 
to an oblate spheroid, with b < a ,  although it will prove to be simple to extend the 
results to the prolate case (see $4). We introduce conjugate coordinates of revolution 
(t, 7) with x = sinh k and y = cos r,~ defined by 

2 = dxy, a = d( 1 + X 2 ) t  (1 - y2)i, (9) 

where d = (a2 - b2)t is the radius of the focal circle. The surface of the spheroid is now 
the coordinate surface x = xo with 

and the Aow domain is the region xo < x < co, 1 < y 6 1. 
The spheroid is a solid body which executes oscillations along its axis of symmetry 

with velocity U coswt i,. If the velocity of the fluid is so small that  nonlinear terms 
may be neglected, the equations of motion are the linearized Navier-Stokes 
equations ( l ) ,  also known as the unsteady Stokes equations. 

We take the curl of the momentum equation to eliminate the pressure and 
introduce the stream function Y defined in cylindrical coordinates by 
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y = - 1  

FIGIJRE 1. The geometry and coordinate system for (a )  an oblate spheroid, and ( b )  a prolate 
spheroid. 

Then we have the vorticity equation 

where E2 is the generalized axisymmetric potential operator given in oblate 
spheroidal coordinates by 

The limiting conditions on the velocity are : 

on the body u = U cosoti,, 

a t  infinity U - t O .  

The rate of decay of u must be so fast that there are no source terms a t  infinity. 
Therefore we need 

r2u-z0 a s r + c o ,  

where r2 = rrr2+z2 is the spherical radius. We also require that there are no 
singularities in the flow field. (This precludes the limit x,, = 0 in which the body is a 
disk). The flow is periodic in time, so we may take the stream function to be of the 
form Y(a ,  z ,  t )  = Re {y?(w, z )  e-i‘”t} where $ may be complex. Then we have 

(15) 

0 
E4y?+i-E2y? V = 0, (16) 
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on x = x0, $ = -;w2u = -id2U(l +xi) (1-yZ) 

$ x = ~ ~ x U  = - d 2 U ( 1 - y 2 ) ~ , ,  

$+0  asx+co,  (19) 

$ = 0, @u is finite, on y = 1. (20) 

There is also symmetry about the plane y = 0, so we have $(y) = $( -y) and 
@v = 0 on y = 0. It is worthy of note that (16)-(20) are valid in the coordinate system 
that is fixed in the body. This accelerated frame of reference has no effect other than 
the inclusion in the force of a buoyancy-like term which is equal to the acceleration 
times the mass of the displaced volume of fluid. 

We are ultimately interested in the force on the body which is of the form 
FH = Re{FePiwt}. The complex amplitude F is given by Lawrence & Weinbaum 
(1986) to be 

(21) F = -piw UV+471: lim -$ , I r + m  w2 r3 1 
where V = $a2b is the volume of the body. 

U ,  lengthscale d ,  and force scale pUd as follows : 
To facilitate the solution, we introduce dimensionless quantities with velocity scale 

The asterisks will be ignored and the governing equations simplify to 

(23) 

$ = - ~ ( 1 + x ~ ) ( 1 - y Z ) ,  $ s = - ~ , , ( l - y 2 )  o n x = x ,  (24) 

iwd 
E4$-c2E2$ = 0, with c2 = --, Re{c) > 0 

V 

Conditions (19) and (20) are unchanged. 
The above is a linear boundary-value problem with two parameters xo and lcl. 

It is more usual to use the parameters: aspect ratio b/a,  frequency parameter 
Ihl = a(o/v) i ,  as well as to use the dimensionless force F: = F/671:pUa. However, this 
would unnecessarily complicate the equations. After the results are obtained, i t  is 
simple to convert them to the more usual parameters by using lengthscale a instead 
of d in ( 2 2 ) .  

3. Analytic solutions found via small perturbations 
The solution to (19)-(24) is very complex in the general case and will be treated in 

$4. Valuable insights can first be obtained by examining certain limiting cases which 
will also be useful for checking the full calculations. Two cases will be considered : (a )  
low frequency, IcI + 1 ; and ( b )  high frequency, Ic( b 1 .  The case of a nearly spherical 
body, x0 b 1, was considered previously (Lawrence & Weinbaum 1986). 

3.1. Low frequency 
At very low frequencies, the flow becomes quasi-steady and so the solution to zero 
order is that for steady flow past a spheroid first given by Sampson (1891) and 
discussed by Happel & Brenner (1965) (here we use the dimensionless quantities of 
§ 2 ) :  

$,, = ( 1  -y2) { --g1 x +F2[x- ( x 2  + 1) cot-' X] +C3(x2 + l)}, ( 2 5 )  
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(26) 
with 2 -(xi- 1 )  

C, = , C, = o ,  
5, - (xi - 1) cot-' xo ' c2 = x, - (xi -. 1 )  cot-' xo 

and (27) 

Lawrence (1988) has shown that the force on a general body a t  low frequency is given 
by (6), in which A is the resistance tensor for arbitrary slow motion of the body. For 
the axisymmetric motion of a spheroid, (6) loses its tensorial nature and the 
dimensionless force is given by 

F = -6n[AII + c A ~  + O(C')],  (28) 

(29) A - -- Fo - - 3[xo-(x;-l) 4 cot8-lx,]-l. 
' I -  611 

in which 

The result (28) has been verified directly via asymptotic matching of inner and outer 
fields by Lawrence (1986) and is in agreement with the first-order low-frequency 
expansion of Lai & Mockros (1972). 

3.2. High frequency 
When the frequency of oscillation is very high, the flow field will be almost inviscid 
and the potential-flow solution will be valid everywhere except in a thin boundary 
layer on the surface of the body. In  order to calculate the perturbed stream function, 
one must compute the boundary-layer velocities and the displacement effect on the 
external pressure field via matched asymptotic expansions. However, Batchelor 
(1967) describes a simple method for obtaining the in-phase part of the force, i.e. the 
damping force, by integrating the dissipation in the boundary layer. 

It is clear that the force on the body may be represented in the asymptotic 
(dimensional) form : 

F - -6npUa(h2) [m,+h-1B+O(h-2)], (30) 

where ma is the dimensionless scaled added mass, found from Green (1833) : 

2 (1 + xi): (1 - xo cot-' xo) 
9 [xo - (1  +xi) cot-' xO] . ma= +- 

Batchelor (1967) gives the in-phase part of the force to be FR coswt with 

In (32), U s  is the velocity of the fluid a t  the surface of a body that is stationary in 
uniform potential flow at infinity. Batchelor (1967) also gives the stream function for 
a spheroid moving through stationary inviscid fluid to  be 

1 x- ( l+x2)  cot-lx 
x, - (1  + xi) cot-' xo 

I++ = $Ua2(1 - y 2 )  (33) 

To change (33) to the case of the stationary spheroid, we simply subtract a uniform 
stream, which is a term 
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The velocity components are 

and the elcmental area dA is given by 

dA = 2na2(1 +xi)-$(xi+y2);dy, 

so 

473 

(36) 

(37) 

Now (33), (34) and (37) are combined to give 

xi) ( 1  - xo cot-1 xo) 
FR = - 27cpuU~~ (Er ( 1 + xi)-: [ ( l +  

xo - (1 +xi) cot-’ xo 

The integral in (38) is evaluated with the help of Gradshteyn & Ryzhik (1980) to 
give 

FR = - 2npUa2 (Er (i  + + xi) (1 - xo cot-1 xo) 
xo - (1 + xi) cot-1 xo) 

1 
( 2 + x i )  sinh-’--(l+x$] XO (39) 

Clearly the first-order correction 3 given by (40) is not the same as that obtained for 
low frequencies Ai given by (29). Hence, only for a sphere will the first-order 
corrections for the frequency dependence of the force in the high- and low-frequency 
limits be the same. Result (3) is a remarkably simple special case. 

4. Full solution in spheroidal harmonics 
The governing equation (23) may be factored to give 

E 2 ( E 2 - ~ 2 ) $  = 0. 

This in turn has a solution made up of two parts: 

$ = $kc.‘+$.”. (42) 

The first part, $p, is a potential function and must satisfy the equation 

E2$’ = 0. (43) 
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(E2-c2)$= = O .  (44) 

The inhomogeneous terms generated may be absorbed in $'. It is simpler to treat the 
two components separately as far as is possible and combine them at the end. The 
following solution parallels those of Kanwal (1955) and Lai & Mockros (1972), 
although the choice of representation differs somewhat. For this reason, only a brief 
derivation will be given. Details may be found in Lawrence (1986). 

The two terms $' and $" are separately required to satisfy the homogeneous 
boundary conditions which guarantees the same of $ itself. The resulting solutions 
are m 

$' = (1 -y2 )+( l  +x2)i C' A, ~ k ( , y )  Qk(ix), (45) 
n=l 

Fore-and-aft symmetry requires that the arbitrary constants A, and B ,  are zero for 
even values of n, and X' indicates that only alternate values of n are included in the 
sum. The functions P i ,  Qk are associated Legendre functions of the first and second 
kind of order one. The functions S,, are the prolate angle spheroidal wave functions 
of the first kind of order one, while the functions RiZ are the radial spheroidal wave 
functions of the third kind of order one (Hammer 1957 ; Stratton et al. 1941 ; Chu & 
Stratton 1941 ). 

Before we apply the inhomogeneous conditions (24), we must sum the two 
components of the solution from (45) and (46). The stream function is 

m 

$ = (1 - y*)i (1 + x2)a C' [ A ,  Pk(y)  Q;( ix) + B,  Sln(c, y) Ri3,'(c, ix)]. (47) 
n=l 

This satisfies the requirements of symmetry, evanescence a t  infinity and regularity 
a t  the poles. The coefficients A, and B, are to be determined from (24), which 
gives ~ 

C' 1 ~ , ~ ~ ( y ) & ~ ( ~ ~ , ) + B , 8 , , ( c , y )  RY,'(c,ix,,)] = -i(l +xi):(1-y2)a, 
n=l  

m 

C' [ A n P k ( y )  D&~( ix , )+B,S l , ( c ,y )DR~~(~ ,  ix,)] = --x,(I -y2):. 
n=l  

The differential operator D is defined by 

d 
ax  

SO Df(ix) = - (x2 + l)if(ix) 

At this point, it is convenient to  note some of the properties of the functions 
Pk(y)  and Sln(c, y). Abramowitz & Stegun (1965) give the definitions 

d 
P ~ ( Y )  = - (1 -y2))"-Pn(y), (50) 

Pl(y) = y, P2(y) = i(3y2 - I ) ,  etc. (51) 

dY 
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So we can determine 

P:(y) = - (1 - y2$, Pt(y)  = - 3y( 1 - y2)i, etc. 

The orthogonality relation 

and the expansion for n 

are used to determine 

r 
and, finally 
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(52) 

(53)  

(54) 

(55) 

Now we multiply (48) by Ph(y) and integrate from y = - 1 to y = 1, making use 
of the orthogonality relations (53) - (56). This gives 

2m(m+1) 2m(m+1) 2 
2 m + l  3 

+ Z’ B, R:~(C,  ix,) dg-,(c) = -(l+x~)hJ,,,  (57a) A m  QL(iz0) 2m + 

n-1 

(57 b)  
2m(m+1) O3 2m(m+1) 4 

= - x  s 
2m+1 3 O 

+ C.’ B, DRYi(c, ix,) dz-,(c) 
2 m + l  ,=I 

A m  DQh (ixo) 

We define B,  = B, R:?(c, ix,) and rearrange (57) to get 

Equations (58) represent a pair of coupled infinite systems of linear equations for 
the coefficients A ,  and B,, from which A ,  can easily be eliminated. They may be 
solved by truncation and matrix inversion. The force is found from (21), so we need 
to obtain limr+w ( r3 /m2)  $. Flammer (1957) indicates that the terms of $D decay 
exponentially in the far field, whereas *p yields the dominant term (Magnus, 
Oberhettinger & Soni 1966), 

(59) 4 - (1 -y2); (1 +x2)f A,P:(y) &:(ix) - - (1 - yz) $Al z-l. 

so 
-3 -3 

t The d:”(c)  are determined by a lengthy procedure which is described by Flammer (1957) and 
Lawrence (1986). 

I6 FLM 189 
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Finally we have 
F = $xc~[z~(  1 + xi) - 2A J. 

Thus the force on the spheroid depends only on the first coefficientA,. However, the 
value of A ,  depends on all the coefficients whose values must be found by solving (58) 
simultaneously. The details of this and other calculations are given by Lawrence 
(1986). 

4.1. Prolate spheroid 

The prolate spheroid is a simple extension of the oblate spheroid and the problem can 
be organized so as to generate exactly the same equations and the same result for the 
force. The geometry is as shown in figure 1 (b )  with b > a and e2 = b2-a2.  The 
coordinate transformation is slightly different in this case : 

z = ezy, a = e(z2-i):(i-y2);. (62) 

The surface coordinate is zo = b /e ,  with a l e  = (z;- 1);. 
The above quantities can be made the same as for an oblate spheroid by using 

imaginary values of d and x. We let d = ie and x = - i ~ ,  then the problem reduces 
identically to that for an oblate spheroid. The only difference is that some of the 
parameters are imaginary. 

5. Results and discussion 
Several different lengthscales have been used in the preceding sections, so we must 

first unify the results. The most important lengthscale is a, the radius perpendicular 
to the motion, and this will be used from now on. We shall use the most appropriate 
force scale, which is the Stokes drag on a sphere, 6npUa. The frequency parameter 
to be used as h = (1 - i) a ( o / 2 u ) i  or Ih( = a (w/u) i .  

The results of the full calculation are plotted as solid lines in figure 2. As can be 
seen, the results arc qualitatively similar to those for a sphere, b/a  = 1. At low 
frequencies, the real part of the force dominates and is almost independent of (A1 ; this 
is the quasi-steady Stokes drag. The imaginary part of the force is small and linear 
with ( A [ ,  representing a slight phase shift. At high frequency, the imginary part of the 
force varies with )Al2 and is dominant ; thus the phase is 90". The real part of the force 
is important because i t  results in energy dissipation which, for example, accounts for 
the damping of an oscillating pendulum. It can be seen that the change in the nature 
of the force from quasi-steady Stokes flow to near potential flow occurs as lhl changes 
from about 0.1 to about 100. Accurate numerical results were obtained for oblate 
spheroids for (A(  < 10 and for prolate spheroids for (A (  b/a < 10. The asymptotic 
result of $3.2 may be regarded as accurate for (A[  > 100, so there remains a gap in 
which the results are not known accurately. The broken lines of figure 2 represent a 
correlation based on a 'patching' of the two asymptotic solutions of $53.1 and 3.2 
using an analytic approximation with numerical coefficients determined from the full 
solution. The derivation of this correlation will be described below. 

The asymptotic results may be summarized as 
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FIGURE 2 .  The force on an oscillating spheroid as a function of b/a and IAI : -, full 
calculation ; . . . . ., real part of correlation ; ---, imaginary part of correlation. 

1 -5, cot-Is, 
2, - (1 + st) cot-' so ' 

m, = i(1 +st); 

bay (1 +xi)[ 1 - (2+x:) (1 +xi)-$ 

Here, F, is the Stokes drag correction factor, ma is the scaled added mass, and Fl and 
B are the first-order corrections a t  low and high frequency. B may be identified as 
the Basset coefficient for the spheroid. These coefficients are shown in figure 3 where 
asymptotic components of the force are plotted as functions of the aspect ratio ; for 
the sake of comparison a value of IA) = 10 is used. The important feature is the 
touching of the curves representing the low- and high-frequency first-order 
corrections a t  bla  = 1. As predicted in Lawrence & Weinbaum (1986), these curves 
have the same slope and curvature a t  bla  = 1 and they remain close to each other in 
the range 0.1 < b/a  < 10. It seems reasonable then to represent the force in a way 
consistent with the results of Lawrence & Weinbaum (1986), equation (5) : 

- F  = ~ , + B h + m a A 2 + h ~  A,- . ( 3 
16-2 
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The remainder term, +(A, b /a )  will be a complicated function which for low- frequency 
asymptotes to (F, - B)  and for high frequency is O(h-l) .  For aspect ratios of order 
unity, B and Fl are very close, so $ should always be a small contribution to the 
force. 

Using (67) for the definition, +(A,  b /a )  can be calculated from the exact results as 
far as they are known, and some examples are shown in figure 4 (a-f ). For clarity, we 
have plotted the real and imaginary parts of the function 

@ = - $  A,- 
,:I ( :)$ 

In this way, the phase variation of the result can be seen as well as the amplitude 
variation. We see that for low frequency, both real and imaginary parts asymptote 
to (F, - B)/. \ /2,  leading to a phase of in. At high frequency, both parts asymptote to 
zero, but the real part does so more slowly, so that the phase will be zero. 

These figures suggest that  +(A,  b / a )  changes smoothly from (F, - B )  to zero as the 
frequency increases, but takes on complex values. The imaginary part of Q, changes 
a t  slightly lower frequency. There is a slight overshoot, which is more apparent for 
aspect ratios closer to unity since Fl and B are then closer to each other and the scale 
is greatly magnified. The dotted lines in figure 4 are simply scaled versions of the 
hyperbolic tangent function which will be used as an approximation for $ ( A ,  b/a) .  
This approximation is given by 

$ (A, :) x +(Fl - B )  (1 - tanh [a(log h - log A,)]}. (69) 

The form of (69) is reasonable in view of the shape of the curves in figure 4(a-f) and 
the fact that Fl and B are quite close. Equation (69) can be simplified since 

tanh [a(log h - log A,)] = 

so we have 

By a fortunate coincidence, this form of $ ( A ,  b/a) has the same type of phase shift as 
the exact solution, as can be observed in figure 4, where the approximation (71)  is 
shown dotted. Suitable values of a and A, have been obtained from the exact 
solution, i.e. the solid lines of figure 4, in the following way. 

When Ihl = A, and h = hoeiEl4, (69) simplifies since 

tanh [&(log h- log A,)] = tanh [a log (e-in/4)] = - i tan Ban. ( 7 2 )  

So we have 

+k,,e-i.i4,?) a z + ( F ~ - B ) [ I + ~  tari+an]. ( 7 3 )  
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FIGURE 3. Asymptotic components of the force as a function of aspect ratio 
(nominal value of IA( = 10 used for comparison). 

Thus in figure 4 when IAl = A,, 

(Fl - B) (1 - tan $m) (74) 

(E’,-B)(l+tan$m). (75) 

1 
Re{@} = 22/2 

1 
-Im{@} z ~ 

2 d2 
and 

Thus, A, is the value of IAJ where the two curves are equidistant from the centreline 
@ = &F1-B)/2/2, and a is found from 

4 
a = - tan-l 

- I m  {@} - Re {@} 
71: 

The values obtained are displayed in table 1. 
At this point, it is convenient to  rewrite (67) as 

The approximations to $(A, b / a )  derived from table 1 and (71) are shown as dotted 
lines in figure 4, and the corresponding force (77) is shown as broken lines in 
figure 2. 

The least-accurate behaviour of the correlation is a t  intermediate frequencies and 
large aspect ratios. From figures 2 and 4(  f )  we see that with b /a  = 10 and IAl = 0.1, 
the discrepancy in Im(F} is about 0.5%; the largest error in Re@‘) is 0.1% a t  
IAl = 0.5. The accuracy of this approximate representation is extraordinary 
considering the complicated nature of the exact calculation and the simple form of 
the correlation (77).  In  addition, a very useful property of the correlation is that (77) 
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~~~ 

b/a 0.1 0.2 0.5 1 2 5 10 

A 0  6.01 2.86 0.84 - 3.60 1.12 0.59 
a 0.394 0.464 0.636 - 0.687 0.543 0.494 

TABLE 1 .  Values of A, and a for the correlation equation 

1 0 7  

105 

10-1 L ’ I I 
10-1 10 103 

IN 
FIGURX 5. Asymptotes of the force as a function of IAl for different aspect ratios 

may be integrated over all frequencies to provide an inverse Laplace transform of the 
problem, i.e. we can find the transient force for an arbitrary time-dependent velocity, 
and this will be done in the next section. 

Another interesting feature of the results may be observed in figure 3. We can now 
regard the difference between the two touching curves for the linear corrections as 
representative of the phase-varying force $(A,  b / a ) .  When the aspect ratio is large, we 
see that the added mass is small, since the body is ‘streamlined’, whereas the Stokes 
drag and Basset force increase with the length of the body. We can conclude, 
therefore, that for long bodies at moderately high frequencies the Basset force and 
phase-varying force are dominant. These considerations are illustrated in figure 5 
where the asymptotes for the forces are shown as functions of frequency for a few 
aspect ratios. Clearly for a body with aspect ratio 100, the Basset force and phase- 
varying force dominate over the range 1 < (A(  < 1000. 

The above discussion leads us to expect that long bodies exhibit three distinct 
types of behaviour depending on the frequency of oscillation. At very low frequency, 
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FIQURE 6. The regions of different behaviour in the parameter space of Jhl and b/a. The dashed 
lines are separated from the solid lines by a factor of 10. 

the flow is essentially quasi-steady in the neighbourhood of the body and the force 
is dominated by the steady Stokes drag. At very high frequencies, the potential-flow 
limit is virtually reached and the force is dominated by the virtual mass term. There 
is a third region of simple behaviour in which the flow is locally two-dimensional near 
the body, the ends of the body and the far field being relatively unimportant, and the 
force is dominated by the generalized Basset and phase-varying forces. The extreme 
limit of these flows has been discussed by Batchelor (1954) and Hasimoto (1955). 
These workers considered infinite cylinders where the effect of the external pressure 
gradient does not contribute to the unsteady viscous layer and the shear stress is 
simply a modification of (2) to account for an arbitrary uniform cross-sectional 
geometry. The second and fourth terms in (77) are an extension of this concept to 
elongated bodies with slowly varying cross-sectional area. The boundaries of these 
regions of different behaviour are shown in figure 6. 

6. Inversion of the Laplace transform 

then the differential equation for Y ( r ,  t),  is 
If we consider the force on the spheroid in arbitrary motion with velocity W(t), 

E4Y-E2Yt = 0, (78) 

We now define a Laplace transform over time 

9[ f ( t ) ]  = R s )  = 1; e-""ft) dt (79) 

so that Y ( r ,  s )  satisfies the equation 

E4 !F-sE2Y = Y(r, 0). (80) 

If the fluid is initially a t  rest, Y(r ,  0) = 0, so that (80) becomes the same as (23) with 
Y ( r , s )  replacing @(r,c2) .  If lengthscale a had been used from the beginning in (23), 
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c2 would be replaced by h2. The force on the body g H ( t )  transforms in the same way, 
so the correlation (77) would give 

Fs+Bsf+m,s+’-zos~ F ( S ) ,  
F - B  zo + sa 1 

with z ,  = hp. The Laplace transform may be inverted to  give 

(82) 

In (82) and what follows, the time is made dimensionless using the viscous diffusion 
time a2/v .  The first three terms of (82) are the analogue of Basset’s (1888) result for 
a sphere, with the Basset force given by the high-frequency correction, viz. R. The 
fourth term has no analogue for the case of a sphere, since then Fl - B = 0, and this 
new term will be considered in detail. The memory function G(t)  is much more 
complicated than the t-a term in the Basset force; its Laplace transform is 

At high frequency, G(s) - Z ~ S - ( ~ + ~ ) ,  so the inverse transform for small times will be 
G(t)  N z,[17~+a)]-ita-;. In  table 1, we see that a is positive and typically lies in 
the range 0.4 < a < 0.7. Thus G(t)  will always have less singular behaviour for small t 
than does the Basset memory function t-i, and for a 3 0.5, G(t)  will not be singular a t  
all. However, a t  large t (small frequency) G(s)  - s-i, so G(t)  will have the same 
behaviour as t-i. 

Although (83) is a simple function of s, its inverse transform is difficult to find in 
the general case. We shall consider first the two special cases a = i, a = 1, where the 
transform is tabulated. In  these cases, the inverse transforms are (Oberhettinger & 
Badii 1973) 

G,(t) = (-zo)~e-zoterf(-z,t)f, a = 1, (85)  

The first of these is related to the function called w(z) by Abramowitz & Stegun 
(1965). w(z) is given in terms of a power series in z and asymptotic inverse power 

m 

and as t+  00, 

The second function (85) is not dignified with a symbol. In  this case Abramowitz & - 

Stegun give 
zo2ti  O0 2n 1 co ( - 2  t)”  

?&SO T(n + ;) . G1(t)=7[:n=o c 1.3 ...( 2n-1) ( - z o t ) ”  = zot* --%-.- (88) 

The inverse transform of Ga(s) is not tabulated for arbitrary values of a, but it can 
be found quite easily by the following (non-rigorous) method. We write G(s) from (83) 
in the form 

(89) G(8) = zo s-t- (1 + 2, S-a)-1. 
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FIGURE 7 .  The memory function G(t )  which appears in the new foye term: -, correlation (92); 
, asymptotic result for b/a z 1 (93); ---, the Basset, l/(nt)? memory function; ....., crude 

approximation (94). 

Now whenever Is1 > I z ~ ~ ~ / ~ ,  we can expand the binomial as a convergent power 
series : m 

(90) 
B(S) = - c ( -zo) n+1 S - [ ( n + ~ ) a + i ~  

n=o 

This form of the Laplace transform G(s) can easily be inverted to give a power series 
which should be valid a t  least for small values of t :  

The power series (91) is uniformly convergent when a > 0, which enhances its 
chances of being reliable. More importantly, it reduces to the forms of (86), (88) when 
a! = a or 1, which suggests that it is satisfactory. An additional benefit is that G(t)  is 
real, which is not generally true when G(s) is only an approximation, and is a 
consequence of the form chosen for the correlation (77).  If we substitute zo = A r  in 

The form of this function is shown in figure 7 for the values of A, and a! in table 1. We 
can obtain a similar form from (7) for the force derived for a nearly spherical body 
when b/a  is close to unity (Lawrence & Weinbaum 1986): 

Equation (93) is real since the transform G(s) is exact in this case. The function (93) 
is shown dotted in figure 7 .  
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7. Further discussion 
In  principle, the method presented herein can be applied to bodies of arbitrary 

shape. If the solutions for steady Stokes flow and potential flow around a given body 
are available, the methods used in $ 3  can be used to generate the F, and B tensorial 
coefficients. Furthermore, the behaviour of the correlation approximation (7 1) is not 
very sensitive to a and A, except a t  high frequency where its relative contribution to 
the force is least, so a reasonable approximation can be obtained for most body 
shapes by the simpler representation a = g, A, = 1, which allows for a simple 
inversion for an arbitrary U(t). I n  this way, we can obtain approximate results for 
difficult geometries without a full solution of the governing equations. For an 
arbitrary body, we therefore suggest the approximate form 

where F, from (6) is A and 5 = A.A.  The approximation given by the last term in 
(94) is shown in figure 4(g). (Note that for oblate spheroids F-B is negative.) The 
accuracy of (94) will be greatest for bodies whose aspect ratio is of order unity and 
will be least for intermediate values of ( A ( ,  and for slender bodies. If the approximation 
shown in figure 4 (9) is used in place of that in 4 (a )  for a disk-like spheroid of aspect 
ratio 0.1, the relative error in the total force increases appreciably with a maximum 
error of about 3% in the range 1 < )A/  < 10. For the needle-like spheroid of aspect 
ratio 10 considered in figure 4 (  f ), the crude approximation is slightly better, leading 
to a maximum error in the total force of about 2 YO near )A(  = 1. We see that the crude 
approximation (94) works with reasonable accuracy a t  all frequencies for the 
spheroids considered with 0.1 < b/a < 10. We expect that similar accuracy could be 
obtained for bodies of different shape, provided the aspect ratio remains in the range 
considered. 

We can find the inverse transform of (94) using (84) in which x,  = 1.  Thus, the force 
on a body in arbitrary time-dependent motion with velocity W(t) is 

+e(F,-B).S:W~rfc[(t-r)i]dr.  d7 (95) 

Whilst the functional forms of (95) and (7) appear similar, the fourth terms in these 
two expressions for the force represent different types of corrections. Relation (7)  is 
an exact asymptotic form for near spheres only, while (95) is a more general 
approximation for a body of arbitrary aspect ratio. For the perturbed sphere, 5 and 
B are identical up to O(c2). Thus, the fourth term in (94) and (95) vanishes to O(e2) if 
one wishes to use these approximate expressions to describe the near sphere. The 
fourth term in (7)  describes very small corrections to the Stokes-drag and virtual- 
mass forces which combine in different proportions as A varies when e + 0. In 
contrast, the fourth term in (94) and (95) describes much larger corrections which 
arise from the fact that the unsteady component of the damping force has a different 
magnitude a t  high and low frequency for non-spherical bodies. This basic difference 
is apparent in figure 7.  We see that the memory function in equation (7) for the 
perturbed sphere decays very rapidly at long times and exhibits a different behaviour 
to the t-i decay for the correlation approximation (77) from which (95) was 
deduced. 





488 C. J .  Lawrence and 8. Weinbaum 

term in (95) will be O(A Re;) compared to the Stokes-drag term. Typical Reynolds 
numbers for colloidal suspensions are O(lOP4). Thus, when IAl > 100 the unsteady 
interactions between the particles are greater than the quasi-steady interaction. This 
suggests that a major modification to existing theory may be necessary for long 
slender particulates. 

The study of unsteady forces on particles a t  low Reynolds numbers is emerging as 
an important extension of the zero-Reynolds-number or quasi-steady problems that 
have been tremendously popular for the last twenty years. The unsteady forces are 
important in calculating particle trajectories when streamlines are sharply curved 
and the flow accelerates strongly, such as in filter membranes (Wang et al. 1986). 
Such situations also arise in turbulent flow where inertial forces prevent particles 
from following streamlines and contribute to particle dispersion. These areas of 
application are currently being explored. 

This study has been performed in partial fulfilment of the requirements for the 
Ph.D. degree of (3. J. Lawrence from the School of Engineering of the City College of 
the City University of New York and was supported by the National Science 
Foundation special ‘Creativity ’ Grant Award ENG 85-00301. 
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